On self-propulsion by oscillations in a viscous liquid

Giovanni P. Galdi

Department of Mechanical Engineering and Materials Science and Department of Mathematics, University of Pittsburgh, PA USA galdi@pitt.edu

Suppose that a body \mathcal{B} can move by translatory motion with velocity γ in an otherwise quiescent Navier-Stokes liquid, \mathcal{L} , filling the entire space outside \mathcal{B} . Denote by $\Omega = \Omega(t)$, $t \in \mathbb{R}$, the one-parameter family of bounded, sufficiently smooth domains of \mathbb{R}^3 , each one representing the configuration of \mathcal{B} at time t with respect to a frame with the origin at the center of mass G and axes parallel to those of an inertial frame. We assume that there are no external forces acting on the coupled system $\mathcal{S} := \mathcal{B} + \mathcal{L}$ and that the only driving mechanism is a prescribed change in shape of Ω with time. The self-propulsion problem that we would like to address can be thus qualitatively formulated as follows. Suppose that \mathcal{B} changes its shape in a given time-periodic fashion, namely, $\Omega(t + T) = \Omega(t)$, for some T > 0 and all $t \in \mathbb{R}$. Then, find necessary and sufficient conditions on the map $t \mapsto \Omega(t)$ securing that \mathcal{B} self-propels, that is, G covers any given finite distance in a finite time. We show that this problem is solvable, in a suitable function class. Moreover, we provide examples where the propelling velocity of \mathcal{B} is explicitly evaluated in terms of the physical parameters and the frequency of oscillations.