On $L^2(0,T;L^{\infty}(\Omega))$ estimates of finite energy solutions to the Navier-Stokes equations in \mathbb{R}^2

Reinhard Farwig

Technische Universität Darmstadt, Darmstadt, Germany farwig@mathematik.tu-darmstadt.de

The results presented in this talk are jointly obtained with Yoshikazu Giga, The University of Tokyo, see [1].

We consider the Navier-Stokes equations in a smooth bounded domain $\Omega \subset \mathbb{R}^2$ under the no-slip boundary condition with initial velocity u_0 of finite kinetic energy, *i.e.*, $u_0 \in L^2_{\sigma}$, and prove the existence of a unique weak solution $u \in L^2(0,T; L^{\infty}(\Omega))$ satisfying the estimate

$$\|u\|_{L^2(0,T;L^{\infty}(\Omega))} \le c \left(1 + \|u_0\|_{L^2}\right) \|u_0\|_{L^2}$$

with some constant c depending only on Ω .

Note that $H^1(\Omega)$ is not embedded into $L^{\infty}(\Omega)$ so that the argument is not based on the energy equality valid for u, but on a generalized Marcinkiewicz interpolation theorem. This estimate is extended to mild solutions of Serrin's class in \mathbb{R}^n provided that $u_0 \in L^n_{\sigma}$.

References

 R. FARWIG, Y. GIGA: On square-in-time integrability of the maximum norm of a finite energy solution to the planar Navier-Stokes equations. Algebra i Analiz 36, no. 3 (2024), 289-307