The Stokes system with traction boundary conditions in 3D exterior domains

Paul Deuring

Université du Littoral, LMPA, 62228 Calais cedex, France deuring@univ-littoral.fr

Let $\Omega \subset \mathbb{R}^3$ be open, bounded, with C^2 -boundary denoted by $\partial \Omega$. Put $\overline{\Omega}^c := \mathbb{R}^3 \setminus \overline{\Omega}$ (exterior domain). Consider the Stokes system with traction boundary conditions,

$$-\Delta u + \nabla \pi = f, \text{ div } u = 0 \text{ in } \overline{\Omega}^c, \quad \sum_{k=1}^3 (\partial_j u_k + \partial_k u_j - \delta_{jk} \pi) n^{(\Omega)} = b_j \quad (1 \le j \le 3).$$
(1)

Here $n^{(\Omega)}$ denotes the outward unit normal to Ω . Following up a suggestion by T. Hishida (University of Nagova), we could show that in general, problem (1) admits two solutions, which differ insofar as the pressure part of one of them is L^{γ} -integrable near infinity for some $\gamma \in (1,\infty)$ if f has sufficient decay, whereas the velocity part of the other one satisfies a zero flux condition on $\partial \Omega$.

More precisely, let $q \in (1, \infty)$, $r \in (1, 3)$, $s \in (1, 3/2)$, $b \in W^{1-1/q, q}(\partial \Omega)^3$ and $f \in L^q(\overline{\Omega}^c)^3 \cap L^r(\overline{\Omega}^c)^3 \cap L^s(\overline{\Omega}^c)^3$. Then for $\nu \in \{1, 2\}$, there is a solution $(u^{(\nu)}, \pi^{(\nu)}) \in W^{2,q}_{loc}(\Omega^c)^3 \cap W^{1,q}_{loc}(\Omega^c)$ of (1) such that

$$\partial_j \partial_k u^{(\nu)}, \ \nabla \pi^{(\nu)} \in L^q(\overline{\Omega}^c)^3, \ \partial_j u^{(\nu)} \in L^{(1/r-1/3)^{-1}}(\overline{\Omega}^c)^3, \ u^{(\nu)} \in L^{(1/s-2/3)^{-1}}(\overline{\Omega}^c)^3$$

 $(1 \leq j,k \leq 3)$, and in the case $\nu = 1$ in addition $\pi^{(\nu)}|B_R^c \in L^{\gamma}(B_R^c)$ for some $\gamma \in (3/2,\infty)$

and some $R \in (0, \infty)$ with $\overline{\Omega} \subset B_R$. In the case $\nu = 2$ the condition on $\pi^{(\nu)}|B_R^c$ is replaced by $\int_{\partial\Omega} u^{(\nu)} \cdot n^{(\Omega)} do_x = 0$. In general the difference $u^{(1)} - u^{(2)}$ is nonconstant. Moreover the space of all functions $(u, \pi) \in W^{2,p}_{loc}(\Omega^c)^3 \times W^{1,p}_{loc}(\Omega^c)$ such that $u|B_R^c \in L^t(B_R^c)^3$ and $\nabla \pi |B_R^c \in L^{\sigma}(B_R^c)^3$ for some $p, t, \sigma \in (1, \infty)$ and some R as above, and in addition $\int_{\partial\Omega} u \cdot n^{(\Omega)} do_x = 0$, is a uniqueness class of solutions to (1). The same is true if the condition $\int_{\partial\Omega} u \cdot n^{(\Omega)} do_x = 0$ is replaced by $\pi |B_R^c \in L^{\gamma}(B_R^c)$ for some $\gamma \in (1, \infty)$ and some R as above some R as above.